Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 121: 109598, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733572

RESUMO

Lung cancer remains the leading cause of cancer mortality because of highly malignant and metastatic potential. The current status of lung cancer treatment is limited, and more treatment options are needed. Interesting, antipsychotic drugs have been reported to show anti-cancer effects. In this present study, we investigated the anticancer potential of penfluridol (PF), an anti-schizophrenic drug, in lung cancer and its underlying mechanism in vitro and in vivo. In vitro, it could inhibit the viability of various lung cancer cells with G0/G1 phase arrest via increasing the expression level of p21/p27 and decreasing the expression levels of cyclin-CDK complex. Meanwhile, cell-cycle arrest causes DNA repair in the nucleus, which was associated with the upregulation of H2A.X and p-H2A.X. Moreover, PF could also decrease mitochondrial membrane potential and increase reactive oxygen species levels in the lung cancer cells. These results implied that PF might induce the mitochondria-mediated intrinsic apoptosis. In addition, PF inhibits the migration and invasion of lung cancer cells via downregulation of FAK-MMP signaling. In vivo, oral administration of PF at concentration of 10 mg/kg inhibited tumor growth in A549 xenograft model. Notably, PF is an approved drug and the price is exceedingly cheap, so this study demonstrates the potential of PF to treat lung cancer.


Assuntos
Antipsicóticos/uso terapêutico , Apoptose/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Penfluridol/uso terapêutico , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antipsicóticos/farmacologia , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Fase G1/fisiologia , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Penfluridol/farmacologia , Fase de Repouso do Ciclo Celular/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
J Nanosci Nanotechnol ; 18(2): 999-1005, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448525

RESUMO

Zn2SnO4-reduced graphene oxide photocatalysts were synthesized by using SnCl4 5H2O, Zn(NO3)2 · 6H2O and graphene oxide via hydrothermal process. The structure, morphology, specific surface area and photo response of the as-prepared nanocomposites were characterized by X-ray diffraction, Transmission electron microscopy, UV-vis diffuse reflectance spectra, Brunauer-emmett-teller surface area measurement and Photoluminescence emission spectra. Experimental results showed that the Zn2SnO4 nanoparticles, with 20-30 nm a size range, were uniformly dispersed on the surfaces of reduced graphene oxide. Moreover, the as-prepared Zn2SnO4-reduced graphene oxide photocatalysts exhibited enhanced photocatalytic activities for degradation of Rhodamine B compared to those of pure Zn2SnO4. When the amount of reduced graphene oxide was 4 wt%, it showed the highest photocatalytic efficiency of 99.7% for 240 min, and the photocatalytic efficiency was still 98.5% after it was recycled 4 times. It also possessed the band gap of 2.48 eV and specific surface area of 58.1 m2 g-1.

3.
J Nanosci Nanotechnol ; 17(4): 2520-524, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29652119

RESUMO

Zinc ferrite-reduced graphene oxide composites, which could effectively remove the methylene blue from aqueous solution, were prepared via a facile solvothermal process. These as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, vibration sample magnetometer and UV-vis diffuse reflectance spectroscopy. Experimental results showed that solvents played an important role in the electron structure of the final samples. Moreover, they influenced the photocatalytic performance as well. Among all the samples prepared in different solvents, those composites prepared in N-N-dimethylformamide showed the greatest performance. They could effectively remove more than 90% of the methylene blue from the solution in about 180 min. The efficient removal of target dye turned out to be the result of the combination of physical adsorption and photocatalytic degradation under visible light irritation. These catalysts showed remarkable stability, which could be effectively reused for three times. In addition, all these samples showed a certain magnetic response, which was beneficial to recycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...